Uniqueness of entire solutions to quasilinear equations of $ p $-Laplace type

نویسندگان

چکیده

<abstract><p>We prove the uniqueness property for a class of entire solutions to equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} -{\rm div}\, \mathcal{A}(x,\nabla u) = \sigma, \quad u\geq 0 {\text{in }} \mathbb{R}^n, \\ {\liminf\limits_{|x|\rightarrow \infty}}\, u 0, \end{array} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ \sigma is nonnegative locally finite measure in \mathbb{R}^n $, absolutely continuous with respect p $-capacity, and {\rm \mathcal{A}(x, \nabla \mathcal{A} $-Laplace operator, under standard growth monotonicity assumptions order ($ 1 < \infty $) on \xi) x, \xi \in $); model case | |^{p-2} corresponds operator \Delta_p $. Our main results establish similar problem,</p> id="FE2"> u^q +\mu, <p>in sub-natural q p-1 where \mu, are measures satisfies an additional homogeneity condition, which holds particular operator.</p></abstract>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entire Large Solutions of Quasilinear Elliptic Equations of Mixed Type

In this paper, the existence and nonexistence of nonnegative entire large solutions for the quasilinear elliptic equation   2 | | = ( ) ( ) ( ) ( ) m div u u p x f u q x g u     are established, where 2 m  , f and g are nondecreasing and vanish at the origin. The locally H older continuous functions p and q are nonnegative. We extend results previously obtained for special cases of f a...

متن کامل

STABILITY OF POSITIVE SOLUTIONS TO p&2–LAPLACE TYPE EQUATIONS

In this article, we first show the existence of a positive solution to { −Δpu−αΔu = λ(u− f (u)) in Ω, u = 0 on ∂Ω, by the method of lower and upper solutions and then under certain conditions on f , we show the stability of positive solution. Mathematics subject classification (2010): 35J92, 35B35, 35B05.

متن کامل

Existence and Uniqueness of Solutions of Quasilinear Wave Equations (ii)

In this work we prove a result concernig the existence and uniqueness of solutions of quasilinear wave equation and we consider also their trivial solutions. We consider the following initial-boundary value problem for the nonlinear wave equation in the form u+ f (u) + g (u̇) = 0 in [0, T ) × Ω (QL) with initial values u0 = u (0, ·) , u1 = u̇ (0, ·) and boundary vale null, that is, u (t, x) = 0 o...

متن کامل

ENTIRE SOLUTIONS FOR A CLASS OF p-LAPLACE EQUATIONS IN R

We study the entire solutions of the p-Laplace equation − div(|∇u|p−2∇u) + a(x, y)W ′(u(x, y)) = 0, (x, y) ∈ R where a(x, y) is a periodic in x and y, positive function. Here W : R → R is a two well potential. Via variational methods, we show that there is layered solution which is heteroclinic in x and periodic in y direction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics in engineering

سال: 2022

ISSN: ['2640-3501']

DOI: https://doi.org/10.3934/mine.2023068